
An Incremental SAT-Based
Approach to the Graph Colouring Problem

Gael Glorian1, Jean-Marie Lagniez1, Valentin Montmirail2, and Nicolas Szczepanski1

1 CRIL, Artois University and CNRS, F-62300 Lens, France
{glorian,lagniez,szczepanski}@cril.fr

2 I3S, Côte d’Azur University and CNRS, Nice, France
valentin.montmirail@univ-cotedazur.fr

Abstract. We propose and evaluate a new CNF encoding based on Zykov’s tree
for computing the chromatic number of a graph. Zykov algorithms are branch-
and-bound procedures, that branch on pairings of vertices that express whether or
not two non-adjacent vertices have the same colour. Thus, vertices with the same
colour are contracted whereas edges are added between vertices when they have
different colours. Such pairings make possible the use of a well-known recurrence
relation, that states that the chromatic number of a graph cannot be lower than the
the chromatic number of its subgraphs. Our encoding associates with any graph
and integer k a CNF formula that is satisfiable if and only if the chromatic number
of the graph is at least k. We first show that any colouring satisfying a complete
pairing always required a fixed number of colours. Then, we establish a CNF en-
coding that counts the number of colours required by a pairing. However, due to
a large number of clauses required to encode transitivity constraints on pairings, a
direct encoding does not scale well in practice. To avoid this pitfall, we designed
a CEGAR-based (Counter-Example Guided Abstraction Refinement) approach
that only encodes a part of the problem and then adds the missing constraints in
an incremental way until a valid solution with k colours is found or the unsatisfi-
ability of the problem is proven, meaning that the chromatic number of the graph
is greater than k. We show that our encoding scheme performs in many cases
significantly better than the state-of-the-art approaches to colouring.

Keywords: Chromatic number, Zykov, CEGAR, SAT encoding

1 Introduction

Graph colouring is the problem of assigning a minimum number of colours to all ver-
tices of a graph such that no adjacent vertices, i.e. vertices that are linked by an edge,
receive the same colour. The smallest number of colours needed to colour the graph is
called the chromatic number of the graph. The problem appears in a variety of areas
included (but not limited to) scheduling problem [1], sudokus [2], register allocation
used in compiler optimization [3], sports scheduling [4] and exam timetabling [5].

Determining the chromatic number of a graph is an NP-hard task. Several compu-
tational approaches for the colouring problem, that prove empirically viable for many
instances, have been pointed out [6,7,8,9,10,11,12,13]. They can be divided into two
categories: complete methods and incomplete methods. Incomplete methods are usually

based on greedy or meta-heuristic algorithms and are able to deal with graph containing
a large number of vertices. Nevertheless, such methods are only able to find bounds that
can be far from the optimal solution. Complete approaches are commonly based on the
branch-and-bound paradigm and are able to guarantee that the returned solution is op-
timal. In this work, we propose a complete approach to compute the chromatic number
of a graph.

Recently, the authors of [13] proposed a hybrid CP/SAT approach, called gc-cdcl,
using new lower bound and branching heuristic, and that is so far the most efficient
approach to graph colouring. In the CP-based approaches cited before, seeing all the
colours as a domain for each vertex is common. However, because of the interchange-
ability of colours, such a representation leads to many symmetries which have to be
broken. As done previously [7,13], we propose to take advantage of Zykov’s tree to
break symmetries. More precisely, our CNF encoding does not represent the allowed
colours but choose to encode with propositional variables the fact that two vertices are
coloured in the same way. Thus, instead of colouring the graph, our encoding tries to
pair vertices between them. We demonstrate that, once all vertices are correctly paired,
the number of colours required to colour the graph, while satisfying the pairing, is fixed
and can be computed efficiently by a Boolean circuit. Then, we present a CNF encod-
ing of this Boolean circuit together with the set of clauses representing the constraints
ensuring the pairing correctness, allows us to represent as a whole the k-Colouring de-
cision problem. We empirically tested Partial MaxSAT solvers, as well as linear and
binary searches on the number of colours, using this encoding to see the performances
against state-of-the-art approaches. Unfortunately, we quickly observed that this encod-
ing cannot scale on large graphs: a cubic number of clauses are needed to ensure the
correctness of pairings.

To make our approach scalable in practice, we propose a CEGAR approach using
our new CNF encoding. The idea is as follows: instead of designing an equisatisfiable
propositional formula, we generate an under-abstraction (a formula which is under-
constrained, also called relaxation in other domains). If this under-abstraction is unsat-
isfiable, then, by construction the original formula is unsatisfiable; otherwise, the SAT
solver outputs a model that can then be checked in polynomial time. It could be the case
that the approach is lucky and the model of the under-abstraction is also a model of the
original formula, in which case the problem is solved. In general, the under-abstraction
is continually refined, i.e., it comes closer to the original formula and, in the worst-case,
will eventually become equisatisfiable with the original formula after a finite number
of refinements. Notably, CEGAR has been successfully proposed in many problems
such as Bounded Model Checking [14], Satisfiability Modulo Theory [15], Planning
[16], the Hamiltonian Cycle Problem [17], and more recently RCC8-Reasoning [18]
and Minimal S5 Satisfiability Problem [19].

Abstracting decision problems with a CEGAR-under approach is well-known in
the SAT community. However, the CP/OR community is more familiar with the Logic-
based Benders decomposition (LBBD) [20], which can be viewed as the CEGAR-under
approach for optimization. It is used in many domains where one wants to abstract
and solve an optimization problem. LBBD approaches are orders of magnitude faster
than state-of-the-art MIP for all problems where it has been applied [21,22,23]. One

1 2

3

4

Fig. 1. Illustration of a graph G with 4 vertices such that χ(G) = 3.

could also see the CEGAR-under approach as a Lazy-SMT approach [24,25], where
the problem-specific knowledge extracted from the abstraction is used to guide the re-
finement process, instead of a theory solver.

The paper is organized as follows: after a few preliminaries, we present our new
CNF based encoding and demonstrate its soundness and completeness. Then, we demon-
strate how it can be adapted to be used in a CEGAR-based approach. Then, we show
empirically that first: the direct SAT encoding, either with a linear/binary search on the
number of colours or via a MaxSAT solver is quite competitive against the state-of-the-
art approaches for minimal graph colouring, but, more importantly, that the CEGAR-
based approach outperforms all the tested approaches on the benchmarks that have been
considered.

2 Preliminaries

2.1 k-colouring problem

An undirected graph is a pair G = (V, E), where V it the set of |V | = n vertices (or
nodes) and E ⊆ V × V a set of edges. A sub-graph G′ = (V ′, E′) of G = (V, E) is a
graph such that V ′ ⊆ V and E′ ⊆ E. Let us note G′ = G \ V ′ the sub-graph G′ obtained
by removing from G vertices of V ′, i.e. G′ = (V \ V ′, {(u, v) ∈ E | {u, v} ∩ V , ∅}). The
contraction G/uv of a graph G is the graph obtained by removing any edge containing
the vertices u and v, and by merging the vertices. G + uv is the graph G with the edge
(u, v) added.

A graph colouring problem aims to assign colours to certain elements of a graph
subject to certain constraints. Vertex colouring is the most common graph colouring
problem and is defined as follows: given an undirected graph G = (V, E) and an integer
k (number of colours), find a mapping c : V 7→ {1, 2, . . . , k} that associates, each vertex
i ∈ V of G, a colour c(i) so that no adjacent vertex j ∈ V shares the same colour (i.e.
∀(i, j) ∈ E we have c(i) , c(j)). A mapping c which verifies that c(i) , c(j),∀(i, j) ∈
E is called a valid colouring. We assume that V contains only integers from 1 to n.
Moreover, for obvious reasons, we suppose that @i ∈ V such (i, i) ∈ E.

The most common type of vertex colouring seeks to minimise the number of colours
for a given graph. The smallest number of colours needed for a graph G is called its
chromatic number and is denoted by χ(G). An illustration of a graph G such that
χ(G) = 3 is given in Fig.1. The problem of finding a minimum colouring for a graph is
known to be NP-hard [26]. In fact, graph colouring is even NP-hard to approximate in
specific scenarios [27]. Because its NP-hardness, k-colouring problem can be naturally
translated into CNF.

2.2 Logical preliminaries and CEGAR framework

LetL be a standard Boolean logical language built on a finite set P of Boolean variables
and usual connectives (namely, ∧, ∨, ¬,⇒ and⇔ standing for conjunction, disjunction,
negation, material implication and equivalence, respectively). Formulas will be noted
using lower-case Greek letters such. Regarding the semantics aspect of the propositional
logic, an interpretation I assigns valuation from {1, 0} to every Boolean variable, thus,
following usual compositional rules, to all formulas of L. We denote by I(l) is 1 if l
is satisfied by I, and 0 otherwise. A formula α is satisfiable (also called consistent)
when there exists at least one interpretation that satisfies α, i.e., that makes α true: such
an interpretation is called a model of α and is represented by the set of variables that
it satisfies. If a formula is false for any interpretation, this formula is unsatisfiable. |=
denotes deduction, i.e., α |= β denotes that β is a logical consequence of α, namely that
β is satisfied in all models of α. Without loss of generality, any formula in L can be
represented (while preserving satisfiability) in conjonctive normal form (CNF) i.e., as a
conjunction of clauses [28], where a clause is a finite disjunction of literals and where
a literal is a Boolean variable that can be negated.

Example 1 (Basic graph colouring encoding). Let G = (V, E) be a graph, the following
CNF formula encodes the problem of deciding if it is possible to colour the graph G
with at most k colours (xv j is true when the vertex v takes colour j):

∧
v∈V

(
k∨

i=1

xvi ∧
∧

1≤i< j≤k

(¬xvi ∨ ¬xv j)) ∧
∧

(u,v)∈E

(
k∧

i=1

(¬xui ∨ ¬xvi))

Counter-Example-Guided Abstraction Refinement (CEGAR) is an incremental way
to decide the satisfiability of problems. It has been originally designed for model check-
ing [14], i.e., to answer questions such as “Does α |= β hold?” or, likewise, “Is φ =

(α ∧ ¬β) unsatisfiable?”, where α describes a system and β a property. For such highly
structured problems, it is often the case that only a small part of the formula is needed to
answer the question. The keystone of CEGAR is to replace φ by an abstraction φ′, eas-
ier to solve in practice. There are two kinds of abstractions: an over-abstraction (resp.
under-abstraction) of φ is a formula φ̂ (resp. φ̌) such that φ̂ |= φ (resp. φ |= φ̌) holds. φ̂
has at most as many models as φ and φ̌ has at least as many models as φ.

Roughly, the CEGAR-based methods work on an abstraction of the original model,
which is the current problem targeted by the solver. If it is an over-abstraction (resp.
under-abstraction) which is proven satisfiable (resp. unsatisfiable), then the initial prob-
lem is also proven satisfiable (resp. unsatisfiable). Otherwise, the result returned by the
solver can be spurious, and in this case, several situations may arise. If it is possible to
check that the outcome is a solution to the initial problem, in the positive case, then the
initial problem is also solved. It is also possible to decide the problem with the current
result when the abstraction is equisatisfiable to the input problem. In all other situa-
tions, the CEGAR method refines the abstraction using information from the outcome
in order to carefully select the next abstraction.

1 2

3

4

G

1 2

3

4

G + (1, 4) G′

1,4 2

3
G/(1, 4)

1 2

3

4

G′ + (3, 4)

1 2

3,4

G′/(3, 4)

+(1, 4) /(1, 4)

+(3, 4) /(3, 4)

Fig. 2. Zykov’s tree for the graph in Fig.1

3 From Colouring to Zykov, and Vice Versa

A straightforward algorithm for deciding whether or not a graph can be coloured with
k colours is to search among all mappings from the set of vertices to the set of colours
(brute force). This algorithm, despite being correct, is inefficient for all but the smallest
input graphs. Its lack of effectiveness can be partially explained by the fact that colours
are interchangeable. When a colouring is incorrect, conflicting colourings exist that can
be obtained by permutation. This observation can reveal, partially, why CP solvers are
not able to decide the k-colouring problem for big graphs when the basic encoding (see
Section 1) is used. Even if CP solvers are efficient on a wide range of problems, it is also
known that they do not perform well on symmetric problems [29]. To break symmetries,
[7] propose to take advantage of Zykov’s tree in order to add conflict clauses on the fly,
in such a way that they cover all permutations of the colours.

We now move on towards the definitions of Zykov trees. Let consider G = (V, E) a
graph, and x and y two non-adjacent vertices of G. In any proper colouring of G, either
x and y have different colours or they have the same colour. Thus, a well-known result,
so-called Zykov’s deletion-contraction1 recurrence is defined as follows:

χ(G) = min{ χ(G/(i j)), χ(G + (i j))) } ∀(i, j) < E (1)

Zykov’s tree can be recursively constructed by starting with the single node G, the
root of our binary tree, and branching repeatedly using vertex-contraction on one side
and edge-deletion on the other side on vertices that are not yet connected. Each leaf
of a Zykov tree for G is a complete graph. Of course, we cannot branch on G if G is
complete, and if G = (V, E) is complete, it is easy to show that χ(G) = |V |. By Eq.1, we
know that χ(G) is the minimum value among all leaves of a Zykov tree for G. Let us
consider the graph of Fig.1, Fig.2 shows the related Zykov tree.

1 The historical name is misleading: it either merges vertices or adds non-existing edges.

The search space of the coloured graphs visited when using Zykov’s tree is more
succinct than the one visited by an approach that branches on colours. Indeed, it is
enough to observe that methods that branch on colours implicitly construct a Zykov
tree. Except for the first vertex, each time a new vertex is coloured, it can be contracted
with all the vertices previously coloured in the same way; and an edge can be added
between the newly coloured one and the vertices we already coloured differently. When
the colouring c gives colour at each vertex, each pair of vertices is either contracted or
an edge is added between them. The resulting graph is then complete, and it is present
in the Zykov’s tree as leaf. Because the tree is constructed in a deterministic manner,
it is easy to show that with each colouring c it is possible to associate only one leaf of
the Zykov tree. Note that the opposite does not hold: each permutation c′ of a colouring
c leads to the same Zykov’s tree leaf. Even if Zykov’s trees contain symmetric nodes,
there are fewer symmetries in them than in the search space explored by methods that
colour vertices.

As explained in [7,13], it is possible to explore the search space represented by
Zykov’s tree using a CNF encoding. For a graph G = (V, E), this encoding considers a
set S of Boolean variables si j for all i, j ∈ V that are used to pair the vertices together.
Because edges are not oriented, we only consider si j s.t. i < j. In the case when i > j,
si j is a renaming for s ji. A variable si j set to true means that i and j are coloured in the
same way (contraction). When set to false, it means there exists an edge between i and
j (deletion). The set of clauses tr(G) consists in unit literals ¬si j for all (i, j) ∈ E, and
a cubic number of clauses to ensure path consistency between Boolean variables. For
every triplet i, j and k, we have to encode si, j∧s j,k ⇒ si,k (transitivity) and si, j∧si,k ⇒ s j,k

(Euclideanity). In the following, we call pairing an assignment that gives a value for
each si j. A valid pairing is a pairing that satisfies both path consistency and unit clauses.
Let G = (V, E) be a graph, the clauses tr(G) that encode valid pairings are given by:

tr(G) := ¬si j ∀(i, j) ∈ E ∧ transitivity() ∧ euclideanity()
transitivity(i, j, k) := (¬si j ∨ ¬s jk ∨ sik)
euclideanity(i, j, k) := (¬si j ∨ ¬sik ∨ s jk)
transitivity() := transitivity(i, j, k) ∀i, j, k ∈ V s.t (i < j) and (j < k)
euclideanity() := euclideanity(i, j, k) ∀i, j, k ∈ V s.t (i < j) and (j < k)

Example 2. The following CNF formula encodes the Zykov search space induced by
the graph given in Fig.1:

tr(G) = ¬s12 ∧ ¬s13 ∧ ¬s23 ∧ ¬s24

∧ (¬s12 ∨ ¬s23 ∨ s13) ∧ (¬s13 ∨ ¬s23 ∨ s12) ∧ (¬s13 ∨ ¬s12 ∨ s23)
∧ (¬s12 ∨ ¬s24 ∨ s14) ∧ (¬s12 ∨ ¬s14 ∨ s24) ∧ (¬s14 ∨ ¬s24 ∨ s12)
∧ (¬s23 ∨ ¬s34 ∨ s24) ∧ (¬s23 ∨ ¬s24 ∨ s34) ∧ (¬s24 ∨ ¬s34 ∨ s23)
∧ (¬s13 ∨ ¬s34 ∨ s14) ∧ (¬s13 ∨ ¬s14 ∨ s34) ∧ (¬s14 ∨ ¬s34 ∨ s13)

which is, after unit propagation: tr(G) = (s14 ∨ s34). As saw earlier on Fig.2, either we
assign s14 to true, and s34 to false, which gives us the graph G/(1, 4), or we assign s14
to false, and s34 to true, and thus we obtain the graph G + (1, 4)/(3, 4), or finally, we
assign both variables to true, which gives us the final leaf, the graph G + (1, 4) + (3, 4).

Thus, searching among the Zykov’s tree leaves, ammounts to searching among the
set of valid pairings. Unfortunately, the previous encoding does not give the number of
colours associated with a valid pairing. If we look back at the Zykov’s tree, every leaf
is a complete graph; their chromatic number is their number of vertices. In our case, the
graph is not explicitly constructed and the information is missing. However, Property
1 shows that it is enough to know which vertices are paired together to compute the
number of colours needed while respecting a specific pairing. The general idea is that
if we try to colour the graph vertex by vertex, following the information contained in
the pairing, then an additional colour is required for the vertex j exactly when all the
already coloured vertices i are such that the si j are false. Thus, it is enough to consider
vertices in a given order to compute the number of required colours.

Property 1. Let us consider G = (V, E) a graph s.t. |V | > 0 and S the set of pairing
variables associated to G. If IS ∈ 2S is a valid pairing, then the number of colours
needed to colour G w.r.t. IS is given by the following formula:

Ψ (IS) = 1 +

n∑
j=2

min(IS (si j) s.t. si j ∈ S and i < j)

Proof. Let us demonstrate this result by structural induction on the number of nodes.
Base case: Show that the statement is true for the sub-graph G\{v2, v3, . . . , vn}. It is clear
that the number of colours needed to colour a graph with only one node is Ψ (IS) = 1.
Inductive step: Show that if this property holds for G \ {vn}, then it also holds for
G. Let us consider S ′ = {si j ∈ S s.t. i < j ≤ n − 1}. Using the induction hypoth-
esis, we have Ψ (IS ′) = 1 +

∑n−1
j=2 min(IS ′ (si j) s.t. si j ∈ S ′ and i < j). By construction

of S ′, we also have Ψ (IS ′) = 1 +
∑n−1

j=2 min(IS (si j) s.t. si j ∈ S and i < j). Now, let us
consider G with the associated pairing IS . It is easy to show that if there exists sin ∈

S that is true under IS and s.t. i < n, then no additional colour is required (actu-
ally, the vertex vn can be coloured as the vertices vi). Otherwise, if ∀sin ∈ S s.t.
i < n the value of IS (sin) is false, then it is impossible to colour the last node with
an already used colour. Consequently, the number of additional colours needed when
considering the last vertex is min(IS (sin) s.t. sin ∈ S and i < j), and then we have:
Ψ (IS) = Ψ (IS ′) + min(IS (sin) s.t. sin ∈ S and i < j)

= 1 +
∑n−1

j=2 min(IS (si j) s.t. si j ∈ S and i < j) + min(IS (sin) s.t. sin ∈ S and i < j)
= 1 +

∑n
j=2 min(IS (si j) s.t. si j ∈ S and i < j) ut

It is well known that computing the minimum value of a Boolean vector can be
encoded as an AND gate. We can rewrite the previous sum as one on the set of Boolean
variables C = {c2, c3, . . . , cn} s.t. Ψ (IS) = 1 +

∑n
j=2 c j where c j is defined ∀1 < j ≤ n as

follows:
c j ⇔

∧
si j∈S and i< j

¬si j (2)

By considering tr(G) and the constraint generated by Equation.2, it is possible to
compute the chromatic number of a given graph G by considering the minimisation
problem that consists in satisfying a maximum number of ci to false. This problem can
be encoded as a partial MaxSAT problem where the hard clauses Σ are given by (tr(G)∧

Equation 2) and the soft clauses ∆ are given by the units literals ci ∈ C. Thus, the
minimum number of colours required is 1 + MaxSAT(Σ, ∆).

To deal with the decision problem that consists in deciding if the chromatic number
of a given graph is at least k, it is enough to consider the CNF formula composed with
the clauses of (tr(G)∧ Equation 2) and the set of clauses that encodes (

∑n
j=2 c j ≤ k− 1)

which can be represented using classical encoding, such as a Cardinality Network En-
coding [30]. In the following, we consider different Partial MaxSAT solvers to determine
wherther the approach that consists in minimising the number of c j assigned to true is
a competitive approach to the minimum graph colouring problem. However, by looking
at the CNF encoding, we can observe that transitivity() and euclideanity() add
a cubic number of ternary clauses which slow down the whole approach (see section
6). One way to circumvent them is to use a CEGAR version of the encoding and find
a way to refine it by adding as few clauses as possible while minimising the number of
SAT calls.

4 A CEGAR Version of the Encoding

The main concern with our encoding is the number of clauses needed to guarantee pair-
ing validity. To overcome this difficulty, we propose to relax transitivity and Euclidean-
ity constraints and incrementally execute a SAT solver on an under-approximation φ̌
of the problem. If the solution violates some transitivity or Euclideanity constraints,
we prevent them in the new abstraction by adding clauses. To compute the violated
constraints, we should consider each triple (likely a large number) and check its con-
sistency with the result. Such an approach is clearly impractical when the number of
vertices grows.

To avoid this pitfall, we propose to colour the graph using the information contained
in the returned pairing λ. Indeed, we assign each vertex u with the set c[u] of the k
possible colours. Then, we consider each vertex u incrementally in the natural order and,
when it is possible (c[u] , ∅), select an available colour i for it in c[u]. Afterward, the
pairings are used in order to colour as u every vertex v such that suv ∈ λ. If v cannot be
coloured as u because i < c[v], then c[v] becomes empty and we consider a vertex w that
removes i in c[v]. In such a case, transitivity and Euclideanity constraints on (u, v,w) are
added in φ̌. We next consider every vertex vs.t.¬suv ∈ λ and remove from c[v] the colour
i. If c[v] becomes empty, we search for a vertex w that forces v to be coloured with the
colour i. In the case when such w exists, the transitivity or/and Euclideanity constraints
on the triple (u, v,w) are missing and must be added. In both cases, the solver is run
once more on the updated under-approximation and the all process is repeated until
spurious triples can be identified. Algorithm 1 gives the pseudo-code of our checking
method. The following property shows that if check(λ,G, k) returns ∅ then it is possible,
following λ, to colour G with k colours.

Property 2. Let G = (V, E) a graph, k an integer and λ an interpretation that satisfies an
under-abstraction of tr(G) that contains at least: the unit clauses ¬suv for all (u, v) ∈ E,
the clauses encoding Equation.2 and the clauses that encodes

∑n
ci

ci ≤ k − 1. If T =

check(λ,G, k) returns ∅ then it is possible, following λ, to colour G with k colours.
Otherwise, ∃(i, j, k) ∈ T then λ 6|= transitivity(i, j, k) ∧ euclideanity(i, j, k).

Algorithm 1: check(λ s.t λ |= φ̌,G = (V, E) a graph, k an integer) : T a set
1 T ← ∅; c a map;
2 for u← 1 to |V | do c[u]← {1, 2, . . . , k};
3 for u← 1 to |V | do
4 if c[u] , ∅ then
5 c[u] = {i} s.t. i ∈ c[u];
6 for v← u + 1 to |V | do
7 if ¬suv ∈ λ then
8 c[v] = c[v] \ c[u];
9 if c[v] = ∅ and ∃w s.t. w < u, swv ∈ λ and c[w] = c[u] then

10 T ← T ∪ {(u, v,w)}

11 else
12 c[v] = c[v] ∩ c[u];
13 if c[v] = ∅ then
14 let w s.t. w < u, svw ∈ λ and c[w] , c[u] or ¬swv ∈ λ and c[w] = c[u];
15 T ← T ∪ {(u, v,w)};

16 return T ;

Proof. First, let us demonstrate that if ∃(i, j, k) ∈ T then λ 6|= transitivity(i, j, k) ∧
euclideanity(i, j, k). Let us consider the two cases where a triple t can be added:

– t is added line 10, that means we have two vertices u and v s.t. u < v, c[u] = {i},
¬suv ∈ λ and c[v] \ {i} = ∅. By the if condition (line 9), we also have ∃w s.t. w < u
svw ∈ λ and c[w] = c[u]. Since c[u] = {i} and w < u then swu ∈ λ (otherwise
i would have been removed from c[u] by w). Thus, we have {swu, swv,¬suv} ⊆ λ
which implies that λ 6|= euclideanity(w, u, v).

– t is added line 15, that means we have two vertices u and v s.t. u < v, c[u] = {i},
suv ∈ λ and i < c[v]. i < c[v] means that i has been previously removed (line 8 or line
12) when some vertex w < u has been considered. Two cases have to be considered.
Either c[w] = {i}, in this case ¬swv ∈ λ and we necessary have {¬swv, swu, suv} ⊆ λ
(swu ∈ λ because i ∈ c[u] and w < u). Or c[w] , {i}, which implies that swv ∈ λ and
then we have {swv,¬swu, suv} ⊆ λ (similarly, ¬swu ∈ λ because i ∈ c[u] and w < u).
In both cases, we have λ 6|= transitivity(u, v,w) ∧ euclideanity(u, v,w).

Therefore, if ∃(i, j, k) ∈ T then λ 6|= transitivity(i, j, k) ∧ euclideanity(i, j, k).
Now, let us demonstrate that if check(λ,G) returns ∅ then λ makes possible the con-
struction of a k-colouring for G = (V, E). First, we show that if T is empty then all the
vertices v are coloured in c[v], i.e. @v ∈ V s.t. c[v] = ∅. Towards a contradiction, suppose
that after the for-loop (line 16) ∃v ∈ V s.t. c[v] = ∅ and T = ∅. By considering the first
emptied vertex v, it is easy to show that the only situation, where c[v] can be emptied
whereas no triple are added in T , is line 10 where no vertex w can be found when u is
considered. Indeed, if c[v] becomes empty at line 12, then a triple is added immediately
(lines 13 – 15). Otherwise, if we can find w < u s.t. swv ∈ λ and c[w] = c[u] then a triple
is necessary added. Therefore, ∀w < v we have ¬swv ∈ λ and then by Equation.2 we also
have cu ∈ λ. Thus, since

∑n
i=2 ci <= k − 1 must be satisfied by λ then

∑v−1
i=2 ci <= k − 2

should be satisfied by λ as well. Since c[v] is empty and ¬swv ∈ λ for all w < v, then
there exist k vertices w j s.t. c[w j] = { j} for each j ∈ {1, 2, . . . , k}. Thus, for each colour
j it is possible to determine the vertex w′j that has been assigned first to the colour j.

Let us show that ∀w′j,¬sww′j ∈ λ,∀w < w′j. Towards a contradiction, let us suppose
that ∃w s.t. sww′j ∈ λ. Since the vertices are considered in the natural order, w is coloured
before w′j. But since w′j is the first vertex assigned to j, we have c[w] , { j}. Thus, since
w < v, we have c[w] , ∅, and thus the following instructions are executed. Because
sww′j ∈ λ the else part of the if/else instruction (lines 11–15) should have deleted the
colour j from c[w′j], making impossible to colour w′j in j. Consequently, ∀w′j we have
¬sww′j ∈ λ,∀w < w′j.

Therefore, there exist k vertices w′j s.t. ¬sww′j ∈ λ, ∀w < w′j. Since vertex 1 is
necessary coloured first, it is easy to show that w′1 = 1. By construction, φ̌ encodes
Equation.2, and then we have λ |=

∧n
j=2(c j ⇔

∧
si j∈S and i< j ¬si j). Consequently, λ sat-

isfies cv at least k − 1 literals ci s.t. i < v and then λ 6|=
∑v−1

i=2 ci <= k − 2, proving the
claim.

We conclude by proving that c is a k-colouring for G. Since 1 ≤ i ≤ k, stating that
c is a valid colouring necessary implies it is a k-colouring. Thus, it is enough to show
that c is a valid colouring. Towards a contradiction, suppose c is not valid. Then, there
exist two vertices u and v s.t. c[u] = c[v] = {i} and (u, v) ∈ E. Without loss of generality,
suppose that u < v. Because (u, v) ∈ E, ¬suv is a unit clause of φ̌ and therefore ¬suv ∈ λ.
Thus, when u is coloured (line 4), the set c[v] is updated w.r.t. λ. Since ¬suv ∈ λ, i should
be removed from c[v] (line 8) and c[v] is necessary different from {i}. To conclude, if
T = ∅ then c is a valid colouring of G and a k-colouring of G. ut

5 Related Work

Brelaz’ Dsatur (degree of saturation) [11] greedy algorithm, is one of the oldest but
still successful technique for graph colouring. It works as follows: for each vertex v,
we compute the degree of saturation of v and we use this value and the degree of
each vertex to determine an order to colour the vertices. This heuristic is used within
a branch-and-bound algorithm with one variable per vertex whose domain is the set of
possible colours.

Another way to compute the chromatic number of a graph is to take advantage of its
NP-hardness and use the constraint programming paradigm. Since it is trivial to encode
colouring problems into propositional logic, several SAT-based approaches have been
proposed. To be efficient in practice, such approaches also add constraints to break
symmetries or to represent explicitly the information between non-adjacent vertices
[12,7]. Let us cite color6 that is one of the most efficient solvers [12].

Schaafsma et al. [7] CP approach is very clever but unfortunately, we cannot com-
pare our approach to it. As explained in [13]: “We could not compare our method to the
method of Schaafsma et al. directly. [...] Firstly, the algorithm is restricted to instances
with at most 32 colours. Secondly it solves the satisfiability problem χ(G) ≤ K and uses
a file converter. Finally, the changes made to Minisat’s code do not seem to be robust.”.
However, their approach deserves some explanations. The authors also exploit Zykov’s
contraction. They introduce additional variables ei j in the encoding if the vertices i and

j should be merged using Zykov’s contraction. However, a fundamental difference with
our approach is that they encode the colours as a CP domain. For each colour c and
each vertex v, a Boolean variable xvc stating that the vertex v has the colour c is used.
Even though they propose symmetry breaking [31] to speed-up their approach, they,
unfortunately, suffer lack of efficiency when the number of colours is large.

The second work, closely related to our own one, is the most recent (and most
efficient) approach to the minimum graph colouring problem, namely gc-cdcl [13].
Unlike Schaafsma et al. [7], they do not need to encode colours as a CP domain since
they have a variable for every non-edge in the input graph. Again, as in [7] and our
approach, they rely on Zykov’s recurrence.

Hebrard and Katsirelos [13] made the same analysis as us about the performance of
Schaafsma et al.. They propose a CP hybridisation introducing peculiar propagators to
enforce constraints on the bounds. Contrastingly, we have developed a complete SAT-
based approach when the constraints are relaxed by performing a CEGAR-based search
on the spurious examples that the SAT solver may find.

6 Experimental Evaluation

To assess our approach, we created a tool called Picasso. Picasso is an open-source
solver (written in C++)2. In the following, we compare different versions of our method:

– Full *Decision*, full encoding that decides the bound by using sum constraints and
oracle calls (ascending (1toN), descending (Nto1) and binary search (Dicho);

– Full *MaxSAT solver*, full encoding in combination with a MaxSAT solver;
– CEGAR *Decision*, the relaxed counterpart of the full encoding that decides the

bound by using sum constraints and oracle calls (ascending (1toN), descending
(Nto1) and binary search (Dicho).

We used, as SAT solver, glucose (4.0) [32,33], in incremental mode (with its caching ac-
tivated). We also tried several Partial MaxSAT solvers, such as: maxHS-b [34], mscg2015b
[35], RC2-B [36] and MSUnCore [37]. We selected MaxSAT solvers which have shown
good performances in the 2018 MaxSAT competition [38]. We considered the state-of-
the-art approaches for graph colouring according to [13]: gc-cdcl [13], color6 [12]
and DSatur [11]. We used instances from a colouring webpage3, the “Graph coloring”
and the “Quasi-random coloring” problems. This leads to a list of 159 instances. The
experiments ran on a 4 cores Xeon at 3.3 GHz with CentOS 7.0. The memory limit was
set to 32GB and the runtime limit to 900 seconds per solver per benchmark.

6.1 Overall evaluation of the different methods

We start with an overall evaluation of the effectiveness of each approach. The results
are presented in Fig.3 under the form of cactus plots. It makes explicit the number of
instances solved in a given amount of time per instance. As expected, the methods using

2 The source are accessible at: https://github.com/Mystelven/picasso
3 https://mat.tepper.cmu.edu/COLOR03/

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140

R
un
tim

e
(s
)

Number of instances

Full Nto1
Full Dicho
Full 1toN

Full MSCG
Full maxHS

Full MSUnCore
Full RC2
dSatur
color6
gc-cdcl

CEGAR Nto1
CEGAR Dicho
CEGAR 1toN

Fig. 3. Cactus-plot of the runtime.

our full encoding are not very effective. Even if the methods using MaxSAT solvers
are more efficient than the one that computes the bound, our best version is no more
effective than the weaker state-of-the-art approach. Actually, having a closer look at
their behaviour, the lack of efficiency does not come from SAT solver, but is due to the
encoding itself. 97.3% of the translations have been solved. Hence, there is definitely a
bottleneck here due to the translation.

One can observe in Figure.3, that CEGAR approaches outperform state-of-the-art
approaches. They manage to solve more instances than gc-cdcl, which solves 102 in-
stances out of 159, which was definitely the best overall approach, as explained in [13].
It is important to note that the results do not depend on the way the optimisation prob-
lem is solved: the three types of search perform better than gc-cdcl. We can also note
that, either in Full or in CEGAR mode, it seems that the 1toN approaches perform bet-
ter than their Nto1 and Dicho counterparts. this can be explained because the chromatic
number is generally far from the number of vertices. Thus, it is better to start from 1
than to start from the number of vertices. Table 1 reports the results regarding the num-
ber of problems solved depending on the family of the instance under consideration. As
we can see, CEGAR approaches work well on all the families except for the other and
random categories, where color6 outperforms it. On the random benchmarks, the six
unsolved instances are due to the SAT solving phase. These problems seem to have a
random nature for which CDCL SAT solvers are ill-suited, whereas color6 seems to
deal with them extremely well. In the other category, it is more sparse, we do not lose
on one big category but few instances here and there, except somewhat for the school
one, which represents Class Scheduling Problems. All the state-of-the-art approaches
solve these instances except us. In our case, it seems that verifying solutions with the
checker is time-consuming. It returns only a few triples each time, therefore lacking
time to solve the instance.

We also report a comparison between gc-cdcl and CEGAR 1toN (now denoted
Picasso) in Fig.4. Each dot corresponds to a colouring instance. The x-axis of the fig-
ure represents the computation time needed to compute the chromatic number when

Full MaxSAT dSatur color6 gc-cdcl CEGAR
Nto1 Dicho 1toN MSCG msuncore maxHS RC2 Nto1 Dicho 1toN

DSJ (15) 3 3 3 4 4 6 4 6 2 4 3 3 4
fpsol2 (3) 0 0 0 0 0 0 0 3 2 3 3 3 3
inithx (3) 0 0 0 0 0 0 0 3 1 3 3 3 3
le450 (12) 0 0 0 0 0 0 0 4 4 8 10 10 10
mulsol (5) 4 4 4 4 5 5 5 5 4 5 5 5 5
book (5) 5 5 5 5 5 5 5 2 3 5 5 5 5
miles (5) 2 2 2 1 1 1 1 5 4 5 4 4 5
queen (13) 5 8 8 5 13 13 13 7 11 10 13 13 13
myciel (5) 5 5 5 5 5 5 5 5 5 5 5 5 5
mugg (4) 4 4 4 4 4 4 4 4 4 4 4 4 4
insertion (25) 8 8 8 10 12 12 12 5 7 15 15 15 19
wap (8) 0 0 0 0 0 0 0 0 0 1 3 3 3
qg (4) 0 0 0 0 0 0 0 1 0 3 3 3 3
random (18) 2 2 5 12 12 13 14 14 16 6 10 10 10
other (45) 6 6 6 10 17 17 15 18 25 25 18 20 20

Total (159) 44 47 50 60 78 81 78 81 82 102 104 106 112

Table 1. Number of instances of each sub-family solved by the approaches in consideration, in
bold the best approach for each sub-family.

1

10

100

1 10 100

R
un
tim

e
of
gc
-c
dc
li
n
se
co
nd
s

Runtime of Picasso in seconds

1 < χ(G) ≤ 10
10 < χ(G) ≤ 20
20 < χ(G) ≤ 30

30 < χ(G)

Fig. 4. Picasso vs. gc-cdcl.

Picasso is considered, while the y-axis depicts the time needed to compute the chro-
matic number when gc-cdcl is considered. As we can see, there is a clear trend above
the diagonal, especially on the instances solved in less than 10 seconds by Picasso which
require almost a hundred seconds for gc-cdcl. Moreover, it seems that it does not de-
pend on the chromatic number that needs to be found. Indeed, one could think that the
higher the chromatic number is, more CEGAR loops in Picasso and therefore the worst
the overall performances. However, as depicted in Fig.4 the chromatic-number of the
instance does not have much influence. Actually, the models returned by glucose help
to refine quickly the bound and therefore provide a tremendous speed-up in comparison
to a simple increasing loop. This is a result already known for people working with

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Va
lu
e
of
χ(
G
)

CEGAR loop performed

R50-9g.col (*=21)
fpsol2.i.1.col (*=65)
miles1500.col (*=73)
zeroin.i.2.col (*=30)

school1-nsh.col (*=14)

Fig. 5. Progression of Picasso towards the chromatic number of instances.

NP-oracles: an oracle able to output a model can provide to provide a large speed-up
compared to one answering only yes or no [39]. Indeed, there are problem solvable with
a polynomial number of calls to an oracle that can be solved with a logarithmic number
of calls to an oracle outputing a model.

6.2 Analysis on the CEGAR behaviour

Now that we have analysed how good Picasso in CEGAR mode is, let us see how it is
behaving exactly, i.e. let us determine where is the bottleneck in our approach. First, let
us take a look at the number of CEGAR loops that Picasso is performing. We got that:

min = 2; 1stqu. = 3; median = 6; mean = 10.3; 3rdqu. = 11; max = 88

This shows that Picasso does not loop so many times. Fig.5 reports for some cate-
gories of benchmarks the number of CEGAR loops (x-axis) with respect to the chro-
matic number of the instance (y-axis). One can observe on this picture that the instances
have generally a chromatic number higher than the number of CEGAR loops. The sole
exception is fpsol2.1.1.col which has a chromatic number of 65, where we iden-
tified that, at each step, the model does not provide any information on the chromatic
number. The models returned by the SAT solver help to quickly improve the bound.
This implies that in many cases, checker provides a quite precise refinement and not
just one spurious triple at a time.

Finally, we report in Table 2 the cumulative time spent by the different phases of
CEGAR (encoding, checking and solving) with respect to the chromatic number of the
instance considered. One can observe that, on the instances that we managed to solve,
the SAT encoding is not really time-consuming, neither is the SAT solving phase. Ex-
cept for a few cases, we can observe that the checking phase definitely is the bottleneck
of the approach. This is not really surprising. Indeed, Glucose [32] is a very efficient
SAT solver, and we used the Cardinality Network Encoding from open-wbo [40] which

Encoding Checking Solving
Time (s) min med max min med max min med max

1 < χ(G) ≤ 10 0.00 3.99 32.34 0.01 15.60 152.45 0.00 3.20 72.35
10 < χ(G) ≤ 20 0.01 4.11 45.94 0.01 13.67 161.97 0.00 3.11 83.32
20 < χ(G) ≤ 30 0.02 4.24 79.30 0.01 12.90 163.41 0.00 1.27 105.23

30 < χ(G) 0.01 5.60 71.66 0.01 17.92 222.54 0.00 2.45 95.66

Table 2. Time distribution details for the three phases in Picasso

allows us to refine the bound by adding as few clauses as possible. Therefore, the only
time-consuming task is for each satisfiable answer from Glucose to check the model
returned and determine whether clauses must be added. The median times may look
relatively low, however, the reader must keeping in mind Fig.3. Indeed, most of the in-
stances solved by Picasso are solved in less than 100 seconds. If we have a look at the
instances for which a time-out was reached, it turns out that we spent in median 89.3%
of the time to check models. To be convinced that the checker is indeed a bottleneck,
we tried to implement a naive one, which consists in testing whether for all i,j and k we
have that the constraints transitivity(i, j, k) ∧ euclideanity(i, j, k) are respected.
With such a checker, CEGAR 1toN solves 100 instances, CEGAR Dicho solves 96 and
CEGAR Nto1 solves 95 instances.

7 Conclusion

In this paper, we proposed a new approach for solving the minimal graph colouring
problem using an under-abstraction refinement approach within the CEGAR frame-
work. We showed that our encoding is sound and complete and we implemented our
approach in the solver Picasso. We compared our solver with the state-of-the-art solvers
for the graph colouring problem, on a wide range of benchmarks of different size and
difficulty. We conclude that a basic direct-encoding approach is not competitive; many
of the available benchmarks are large and require a lot of clauses to be encoded. How-
ever, by considering clauses carefully, our CEGAR approach outperforms the other
solvers on most of the benchmarks. As future we plan to avoid checking unmodified
sub-graphs twice by flagging some nodes, i.e., checking only the part which was mod-
ified due to the previous assignment. Moreover, extending the CEGAR approach into
a RECAR (Recursively Explore and Check Abstraction Refinement) one [41] could be
interesting. The unit propagation of the embedded SAT solver would be stronger, and it
could provide us quickly a good upper-bound. Such double-abstraction functions could
make the binary search much faster and improve the overall performance. This is an
exciting perspective for future work.

Acknowledgements

Part of this work was supported by the French Ministry for Higher Education and Re-
search, the Haut-de-France Regional Council through the “Contrat de Plan État Région
(CPER) DATA” and by the IDEX UCAjedi.

References

1. Marx, D.: Graph Colouring Problems and Their Applications in Scheduling. Periodica
Polytechnica Electrical Engineering (Archives) 48(1-2) 11–16

2. Lewis, R.M.R.: A Guide to Graph Colouring - Algorithms and Applications. Springer (2016)
3. Chaitin, G.J.: Register allocation and spilling via graph coloring (with retrospective). In

McKinley, K.S., ed.: 20 Years of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation 1979-1999, A Selection, ACM (1982) 66–74

4. Lewis, R., Thompson, J.M.: On the Application of Graph Colouring Techniques in Round-
Robin Sports Scheduling. Computers & OR 38(1) (2011) 190–204

5. Hussin, B., Basari, A.S.H., Shibghatullah, A.S., Asmai, S.A., Othman, N.S.: Exam
Timetabling Using Graph Colouring Approach. In: 2011 IEEE Conference on Open Sys-
tems. (2011) 133–138

6. Gelder, A.V.: Another Look at Graph Coloring via Propositional Satisfiability. Discrete
Applied Mathematics 156(2) (2008) 230–243

7. Schaafsma, B., Heule, M., van Maaren, H.: Dynamic Symmetry Breaking by Simulating
Zykov Contraction. In Kullmann, O., ed.: Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings. Volume 5584 of Lecture Notes in Computer Science., Springer (2009) 223–236

8. Caramia, M., Dell’Olmo, P.: Coloring Graphs by Iterated Local Search Traversing Feasible
and Infeasible Solutions. Discrete Applied Mathematics 156(2) (2008) 201–217

9. Dowsland, K.A., Thompson, J.M.: An Improved Ant Colony Optimisation Heuristic for
Graph Colouring. Discrete Applied Mathematics 156(3) (2008) 313–324

10. Galinier, P., Hertz, A., Zufferey, N.: An Adaptive Memory Algorithm For The k-Coloring
Problem. Discrete Applied Mathematics 156(2) (2008) 267–279

11. Brélaz, D.: New Methods to Color the Vertices of a Graph. Commun. ACM 22(4) (1979)
251–256

12. Zhou, Z., Li, C.M., Huang, C., Xu, R.: An Exact Algorithm with Learning for the Graph
Coloring Problem. Computers & OR 51 (2014) 282–301

13. Hebrard, E., Katsirelos, G.: Clause Learning and New Bounds for Graph Coloring. In
Hooker, J.N., ed.: Principles and Practice of Constraint Programming - 24th International
Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings. Volume 11008 of
Lecture Notes in Computer Science., Springer (2018) 179–194

14. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: CounterExample-Guided Abstraction
Refinement For Symbolic Model Checking. Journal of ACM 50(5) (2003)

15. Brummayer, R., Biere, A.: Effective Bit-Width and Under-Approximation. In Moreno-
Díaz, R., Pichler, F., Quesada-Arencibia, A., eds.: Computer Aided Systems Theory - EU-
ROCAST 2009, 12th International Conference, Las Palmas de Gran Canaria, Spain, February
15-20, 2009, Revised Selected Papers. Volume 5717 of Lecture Notes in Computer Science.,
Springer (2009) 304–311

16. Seipp, J., Helmert, M.: Counterexample-Guided Cartesian Abstraction Refinement for Clas-
sical Planning. J. Artif. Intell. Res. 62 (2018) 535–577

17. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental SAT-Based Method
with Native Boolean Cardinality Handling for the Hamiltonian Cycle Problem. In Fermé,
E., Leite, J., eds.: Logics in Artificial Intelligence - 14th European Conference, JELIA 2014,
Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings. Volume 8761 of Lecture
Notes in Computer Science., Springer (2014) 684–693

18. Glorian, G., Lagniez, J., Montmirail, V., Sioutis, M.: An Incremental SAT-Based Approach
to Reason Efficiently on Qualitative Constraint Networks. In Hooker, J.N., ed.: Principles
and Practice of Constraint Programming - 24th International Conference, CP 2018, Lille,

France, August 27-31, 2018, Proceedings. Volume 11008 of Lecture Notes in Computer
Science., Springer (2018) 160–178

19. Lagniez, J., Le Berre, D., de Lima, T., Montmirail, V.: An Assumption-Based Approach for
Solving the Minimal S5-Satisfiability Problem. In Galmiche, D., Schulz, S., Sebastiani, R.,
eds.: Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings.
Volume 10900 of Lecture Notes in Computer Science., Springer (2018) 1–18

20. Hooker, J.N.: Logic-Based Methods for Optimization. In Borning, A., ed.: Principles and
Practice of Constraint Programming, Second International Workshop, PPCP’94, Rosario,
Orcas Island, Washington, USA, May 2-4, 1994, Proceedings. Volume 874 of Lecture Notes
in Computer Science., Springer (1994) 336–349

21. Chu, Y., Xia, Q.: A Hybrid Algorithm for a Class of Resource Constrained Scheduling
Problems. In Barták, R., Milano, M., eds.: Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Second International Conference,
CPAIOR 2005, Prague, Czech Republic, May 30 - June 1, 2005, Proceedings. Volume 3524
of Lecture Notes in Computer Science., Springer (2005) 110–124

22. Hooker, J.N.: A Hybrid Method for the Planning and Scheduling. Constraints 10(4) (2005)
23. Tran, T.T., Beck, J.C.: Logic-based Benders Decomposition for Alternative Resource

Scheduling with Sequence Dependent Setups. In Raedt, L.D., Bessière, C., Dubois, D., Do-
herty, P., Frasconi, P., Heintz, F., Lucas, P.J.F., eds.: ECAI 2012 - 20th European Conference
on Artificial Intelligence. Including Prestigious Applications of Artificial Intelligence (PAIS-
2012) System Demonstrations Track, Montpellier, France, August 27-31 , 2012. Volume 242
of Frontiers in Artificial Intelligence and Applications., IOS Press (2012) 774–779

24. de Moura, L.M., Rueß, H., Sorea, M.: Lazy Theorem Proving for Bounded Model Checking
over Infinite Domains. In Voronkov, A., ed.: Automated Deduction - CADE-18, 18th In-
ternational Conference on Automated Deduction, Copenhagen, Denmark, July 27-30, 2002,
Proceedings. Volume 2392 of Lecture Notes in Computer Science., Springer (2002) 438–455

25. Ji, X., Ma, F.: An Efficient Lazy SMT Solver for Nonlinear Numerical Constraints. In
Reddy, S., Drira, K., eds.: 21st IEEE International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE 2012, Toulouse, France, June 25-27,
2012, IEEE Computer Society (2012) 324–329

26. Gebremedhin, A.H., Manne, F., Pothen, A.: What Color Is Your Jacobian? Graph Coloring
for Computing Derivatives. SIAM Review 47(4) (2005) 629–705

27. Zuckerman, D.: Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing 3(1) (2007) 103–128

28. Tseitin, G.S. In: On the Complexity of Derivation in Propositional Calculus. Springer (1983)
29. Gent, I.P., Petrie, K.E., Puget, J.: Symmetry in Constraint Programming. In: Handbook of

Constraint Programming. (2006) 329–376
30. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality Networks: a

Theoretical And Empirical Study. Constraints 16(2) (2011) 195–221
31. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.: Tractable symmetry breaking using

restricted search trees. In de Mántaras, R.L., Saitta, L., eds.: Proceedings of the 16th Eu-
reopean Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants
of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, IOS Press (2004)
211–215

32. Audemard, G., Lagniez, J., Simon, L.: Improving Glucose for Incremental SAT Solving
with Assumptions: Application to MUS Extraction. In Järvisalo, M., Gelder, A.V., eds.:
Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference,
Helsinki, Finland, July 8-12, 2013. Proceedings. Volume 7962 of Lecture Notes in Computer
Science., Springer (2013) 309–317

33. Audemard, G., Simon, L.: Predicting Learnt Clauses Quality in Modern SAT Solvers. In
Boutilier, C., ed.: IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009. (2009) 399–404

34. Davies, J., Bacchus, F.: Exploiting the Power of MIP Solvers in MaxSAT. In Järvisalo,
M., Gelder, A.V., eds.: Theory and Applications of Satisfiability Testing - SAT 2013 - 16th
International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings. Volume 7962 of
Lecture Notes in Computer Science., Springer (2013) 166–181

35. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: Robust Core-Guided MaxSAT Solv-
ing. JSAT 9 (2014) 129–134

36. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python Toolkit for Prototyping
with SAT Oracles. In Beyersdorff, O., Wintersteiger, C.M., eds.: Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings.
Volume 10929 of Lecture Notes in Computer Science., Springer (2018) 428–437

37. Heras, F., Morgado, A., Marques-Silva, J.: Core-Guided Binary Search Algorithms for Max-
imum Satisfiability. In Burgard, W., Roth, D., eds.: Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August
7-11, 2011, AAAI Press (2011)

38. Fahiem Bacchus and Matti Järvisalo and Ruben Martins: Max-SAT 2018: Thirteen Max-SAT
Evaluation. https://maxsat-evaluations.github.io/2018/ (2018)

39. Janota, M., Marques-Silva, J.: On the Query Complexity of Selecting Minimal Sets for
Monotone Predicates. Artif. Intell. 233 (2016) 73–83

40. Martins, R., Manquinho, V.M., Lynce, I.: Open-WBO: A Modular MaxSAT Solver. In Sinz,
C., Egly, U., eds.: Theory and Applications of Satisfiability Testing - SAT 2014 - 17th In-
ternational Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings. Volume 8561 of Lecture Notes in Computer Sci-
ence., Springer (2014) 438–445

41. Lagniez, J., Le Berre, D., de Lima, T., Montmirail, V.: A Recursive Shortcut for CEGAR:
Application To The Modal Logic K Satisfiability Problem. In Sierra, C., ed.: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, ijcai.org (2017) 674–680

